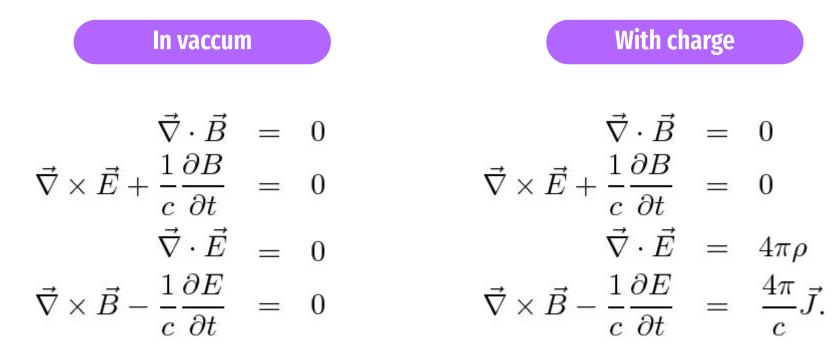
Magnetic monopoles

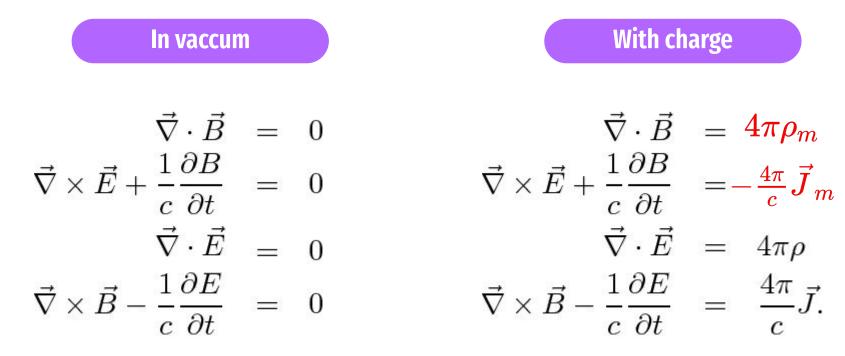
Diego França de Oliveira

1ST Predicting Magnetic Monopoles

Quantization of charge, gauge symmetries and super massive monopoles

Looking for magnetic monopoles


Detection experiments, astronomical bounds and the "monopole problem"



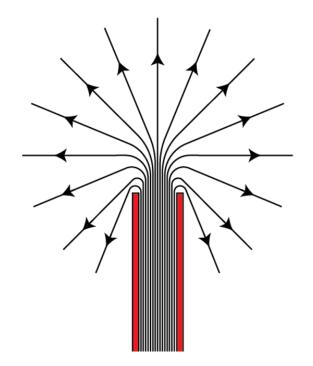
Predicting Magnetic Monopoles

Maxwell's equation symmetry (in gaussian units)

Maxwell's equation symmetry (in gaussian units)

The absence of magnetic monopoles

Quantum mechanics

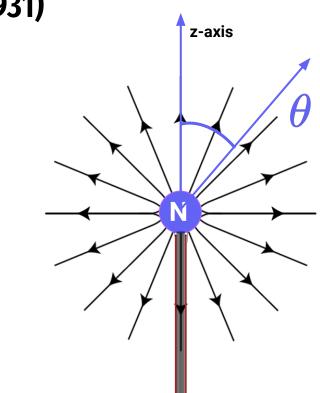

$$ec{B}=ec{
abla} imesec{A}$$

$$abla \cdot ec{B} =
abla \cdot (ec{
abla} imes ec{A}) \hspace{1cm} |\psi_C> = exp(rac{-iq}{\hbar c}\int ec{A} \cdot dec{l})|\psi_A>$$

$$abla \cdot ec B = 0$$

Potential fields forbid magnetic monopoles in ED and QM

- A current through a solenoid produces magnetic field
- If the solenoid is infinitely long and thin, the field lines <u>never close</u>
- We have something similar to a magnetic monopole, but does the theory hold up?



A possible vector potential:

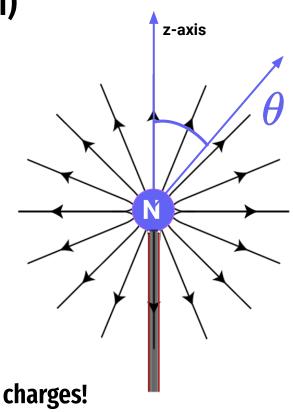
$$ec{A} = g rac{1-cos(heta)}{rsin(heta)} \hat{arphi}$$

 $ec{B}=rac{g}{r^2}\hat{r}$

Dirac's argument (1931)

Flux of magnetic field:

$$egin{aligned} \Phi_B &= \int_A ec{B} \cdot dec{S} = \int_\Gamma ec{A} \cdot dec{l} \ &= 2\pi g (1-cos(heta)) \ \Phi_B(heta = 2\pi) = 4\pi g \end{aligned}$$

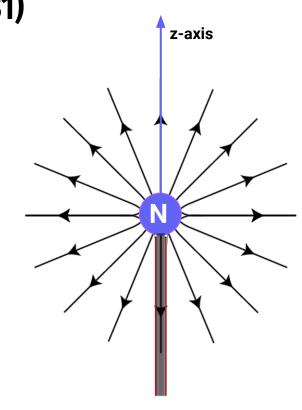

Similar to the gauss law for electric charges!

 $\Phi_E(heta=2\pi)=4\pi q$

Flux of magnetic field:

$$egin{aligned} \Phi_B &= \int_A ec{B} \cdot dec{S} = \int_\Gamma ec{A} \cdot dec{l} \ &= 2\pi g (1-cos(heta)) \ \Phi_B(heta = 2\pi) = 4\pi g \end{aligned}$$

Similar to the gauss law for electric charges! But is mathematically wrong



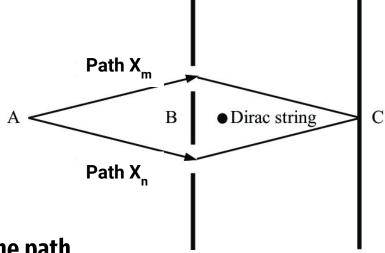
Flux of magnetic field:

$$\Phi_B = \ < egin{array}{c} 2\pi g(1-cos(heta)); heta < \pi \ 0 \ ; heta = \pi \end{array}$$

$$ec{B} =
abla imes ec{A} - 4\pi g \Theta(-z) \delta(x) \delta(y) \hat{z}$$

Dirac string singularity Physical or mathematical?

Is the dirac string detectable?

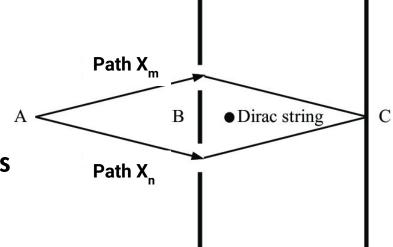

By the Aharonov-bohm effect:

$$|\psi_C>=exp(rac{-iq}{\hbar c}\intec{A}\cdot dec{l})|\psi_A>$$

The phase change will be

$$heta = rac{q}{\hbar c}\intec{A}\cdot dec{l}$$

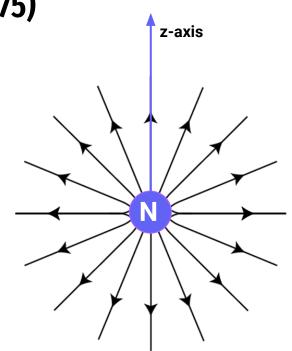
Measuring the phase in C allows one to know the path.



It's possible to calculate the difference in phase shift Between paths.

There is a condition where is undetectable:

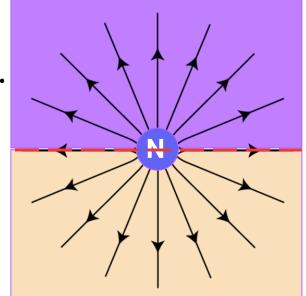
$$rac{-q}{\hbar c}4\pi g=n2\pi
onumber \ rac{-qg}{\hbar c}\in {f Z}$$


If charge is quantized, then magnetic monopoles are allowed!

Charge quantization comes from the dirac string situation. Can we remove the string while getting the quantization condition?

 $abla \cdot ec{B} =
abla \cdot (ec{
abla} imes ec{A})$

Not using a vector potential...Let's try to use more

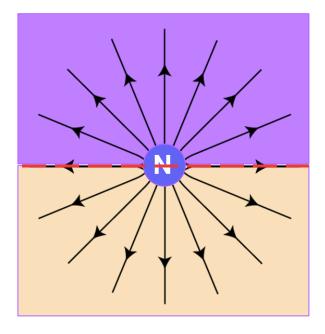

Let's assume two vector potential in two different regions.

$$ec{A}_{sup} = g rac{1-\cos(heta)}{r\sin(heta)} \hat{arphi}; 0 \leq heta \leq rac{\pi}{2}$$
 .

 $-g^{1+\cos(heta)}$

 $ec{A}_{inf}$:

$$extsf{$\theta \leq \pi$} \left\{ egin{array}{c} ec{B} &= rac{g}{r^2} \hat{r} \ \end{array}
ight.$$

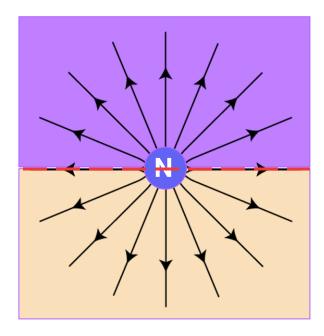


In the equator, is mandatory that:

$$ec{
abla}\chi=ec{A}_{sup}-ec{A}_{in}$$

$$ec{
abla}\chi=-rac{2g}{rsin(heta)}\hat{arphi}$$

$$\chi=2garphi$$



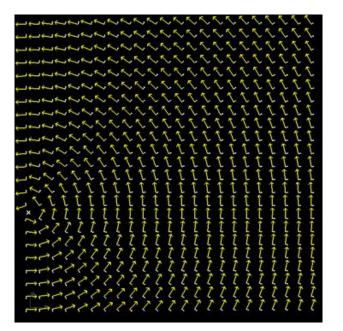
The same gauge field must be valid in QM:

ħс

$$egin{aligned} U_g &= exp(rac{-iq\chi(arphi=0)}{\hbar c}) = exp(rac{-iq\chi(arphi=2\pi)}{\hbar c}) \ U_g &= exp(0) = exp(rac{-i4qg\pi}{\hbar c}) \end{aligned}$$

2qgThe charge quantization is a $\in \mathbf{Z}$ consequence of gauge symmetries!

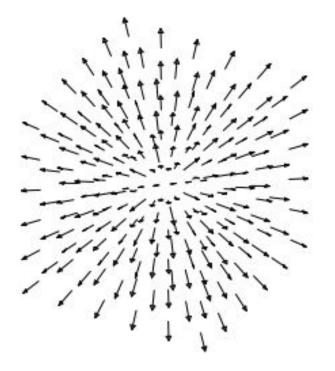
'T Hooft-Polyakov Monopole(1975)


In simple terms

- The gauge field theory allows one to study the fundamental forces in a unified way in high energies.
- What separates the two symmetries, at lower energies, is the higgs field.

	vity	strong	Elec we The	ak	100 GeV
energy		Theory of Everything Grand Unified Theory			10 ¹⁹ GeV 10 ¹⁵ GeV

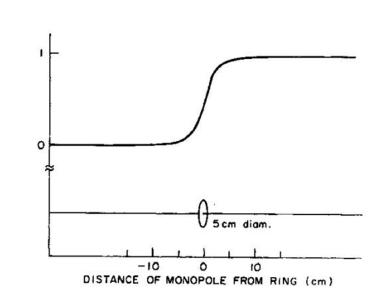
'T Hooft-Polyakov Monopole(1975) In simple terms

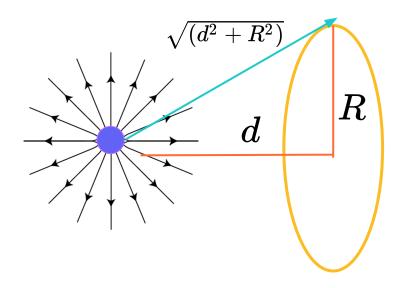

- The higgs field in Grand Unified Theories can be *represented as a vector field* with two characteristics.
 - <u>Continuous and invariant under smooth</u> <u>changes</u> (similar to vector field gauge invariance)
 - Non-zero everywhere in vacuum

'T Hooft-Polyakov Monopole(1975)

In simple terms

- The "Hedgehog" configuration is a interesting situation.
- Field is zero in the center, which <u>can't be</u> <u>removed by smooth changes.</u>
 - It cannot be vacuum: there is a massive particle in the center (E~10¹⁵GeV)
- In this situation, the magnetic field can be determined as $ec{B}=rac{g}{r^2}\hat{r}$
- Gauge theories inevitably predict magnetic monopoles!





Looking for magnetic monopoles

- Monopoles were never seen on earth, but is possible to look for them in cosmic radiation
- If a monopole passes through a superconductive coil, it will produce a current

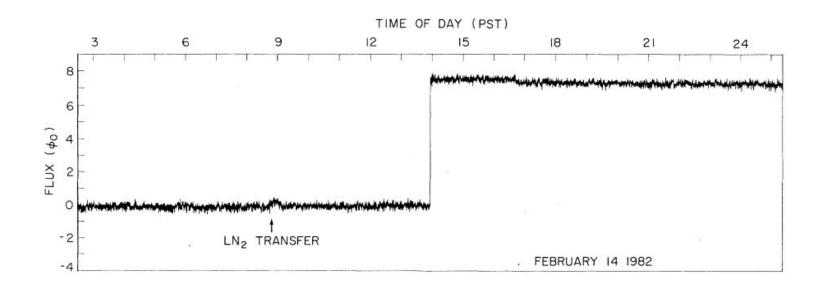
$$egin{aligned}
abla imes ec{E} &= -rac{1}{c} rac{\partial ec{B}}{\partial t} - rac{4\pi}{c} ec{j}_m \ & \oint ec{E} \cdot dec{l} &= -rac{1}{c} rac{\partial \Phi_m}{\partial t} - rac{4\pi}{c} ec{I}_m \end{aligned}$$

• Taking t=0 as the time d=0: \circ t<0 $\Phi_B = 2\pi g [1 + rac{vt}{\sqrt{vt} - 2}]$

$$\Delta = 2\pi g [2 + \sqrt{((vt)^2 + R^2)}]$$

o t>0
 $\Phi_B = 2\pi g [-1 + rac{vt}{\sqrt{((vt)^2 + R^2)}}]$

$$egin{aligned} \Phi_B &= \int_A ec{B} \cdot dec{S} \ \Phi_B &= 2\pi g [1 - rac{d}{\sqrt{(d^2 + R^2)}}] \end{aligned}$$


$$\Phi_B=2\pi g[1-2\Theta(t)+rac{vt}{\sqrt{\left(\left(vt
ight)^2+R^2
ight)}}]$$

$$-LI_{e}(t) = -\frac{1}{c}\Phi_{m} - \frac{4\pi}{c}g\Theta(t) \qquad \Phi_{B} = 2\pi g[1 - 2\Theta(t) + \frac{vt}{\sqrt{((vt)^{2} + R^{2})}}]$$

$$I(t) = \frac{2\pi g}{Lc}\left(1 + \frac{vt}{\sqrt{(vt)^{2} + R^{2}}}\right)$$

$$\lim_{t \to -\infty} I(t) = \frac{4\pi g}{L}$$

$$\lim_{t \to -\infty} I(t) = 0$$

Other experiments

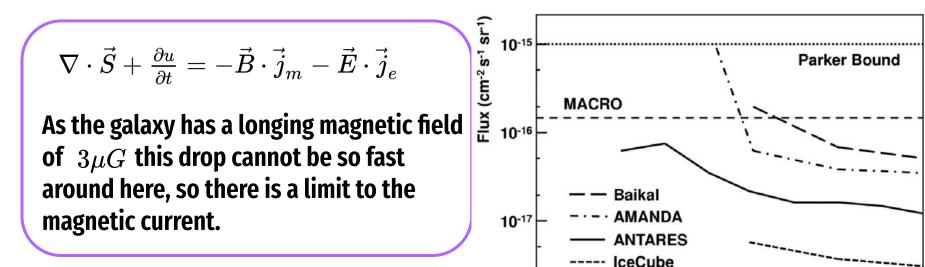
Monopole, Astrophysics and Cosmic Ray Observatory (MACRO)

- MACRO operated from 1989 to 2002 with a detection area of 10000m², never detecting one.
- No one ever saw any evidence of monopoles in space after 1982!
- If monopoles exist, would we be able to find them?

The poynting theorem with magnetic current

Poynting vector:

$$ec{S} = rac{c}{4\pi}ec{E} imes ec{B}$$
 $abla \cdot ec{S} = -rac{1}{4\pi} [ec{B} \cdot rac{\partial ec{B}}{\partial t} + ec{E} \cdot rac{\partial ec{E}}{\partial t}] - ec{B} \cdot ec{j}_m - ec{E} \cdot ec{j}_e$
Field's energy density:


$$u=rac{E^2+B^2}{8\pi}$$

 $\frac{\partial u}{\partial t} = \frac{1}{4\pi} \left[E \frac{\partial E}{\partial t} + B \frac{\partial B}{\partial t} \right]$

$$abla \cdot ec{S} + rac{\partial u}{\partial t} = -ec{B} \cdot ec{j}_m - ec{E} \cdot ec{j}_e$$

The higher the currents, the faster the energy drops

Astrophysical bounds

0.6

0.65

07

0.75

0.8

0.85

0.9

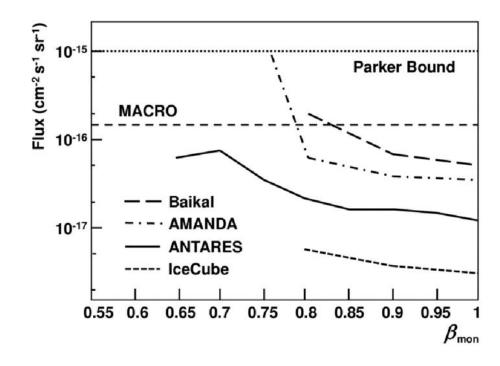
0.95

0.55

The flux F of magnetic field can be estimated. By Parker's bound, it would be

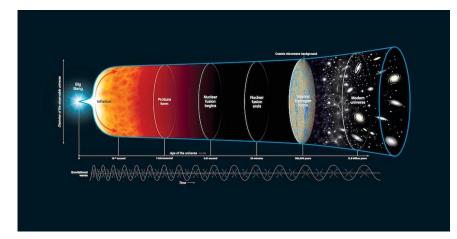
$$F \le 10^{-15} {
m cm}^{-2} {
m s}^{-1} {
m sr}^{-1}$$

Astrophysical bounds


$$F \le 10^{-15} {
m cm}^{-2} {
m s}^{-1} {
m sr}^{-1}$$

Considering a detector the size of MACRO (10000m²), the rate of passing monopoles would be.

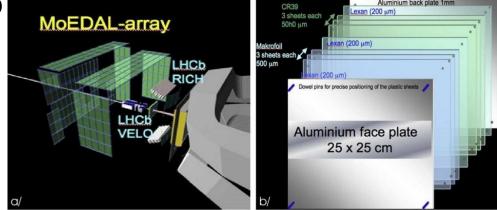
$$rac{N}{t} \leq 1.5 \cdot 10^{-18} s^{-1}$$


$$rac{N}{t} \leq 5 \cdot 10^{-3} billion \ years^{-1}$$

One every 20 billion years!?

Astrophysical bounds

- If they were as massive as expected (E~10¹⁵GeV), they would have formed in the Big Bang.
- To compensate for their gravitational attraction, we need cosmic inflation! ("The monopole problem")


- If that's true, we will never find a monopole.
- Can we make one?

Creating a magnetic monopole

MoEDAL

- Although not predicted, Intermediate Mass Monopoles are still allowed.
- The Monopole and Exotics Detector at the LHC(MoEDAL), with collision energies of 8TeV, has been trying to create a monopole since 2009.

Conclusion

Conclusion

- Magnetic monopoles are allowed under ED and QM
- Gauge field theories expect them at higher energies
- We never find one, and probably never will...
- MoEDAL is the most modern experiment currently trying to prove their existence

Nobel prizes

Paul Dirac(1933) Antimatter prediction

Carl Anderson(1936) Discovery of the positron

References

- [1] Dirac, P. A. M. (1931). Quantised Singularities in the Electromagnetic Field. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 133(821), 60–72.
- [2] Wu, T. T., Yang, C. N. (1975). Concept of nonintegrable phase factors and global formulation of gauge fields. Physical Review D, 12(12),3845–3857.
- [3] Cabrera, B. (1982). First Results from a Superconductive Detector for Moving Magnetic Monopoles.Physical Review Letters, 48(20), 1378–1381.
- [4] Hooft, G. '. (1974). Magnetic monopoles in unifiedgauge theories. Nuclear Physics B, 79(2), 276–284.doi:10.1016/0550-3213(74)90486-6
- [5] Cabrera, B. (1982). First Results from a Supercon-ductive Detector for Moving Magnetic Monopoles.Physical Review Letters, 48(20), 1378–1381.
- [6] Turner, M. S., Parker, E. N., Bogdan, T. J.(1982). Magnetic monopoles fields Review D, 26(6), 1296–1305.
- [7] Acharya, B., et al . . . Chatterjee, A. (2016). Search for magnetic monopoles with MoEDAL prototype trapping detector in 8 TeV proton-proton collisions at the LHC Journal of High Energy Physics, 2016(8).19

Special thanks: bruno Trebbi